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1. INTRODUCTION

Free vibration analysis of structures involves solution of generalized eigenproblem given by
Kp = Mp, (1)

where K and M are nxn matrices, p is an eigenvector, and 4 is the corresponding
eigenvalue. In this work, it is assumed that the matrices K and M are real, symmetric and
positive definite. The eigenvalues of such eigenproblems are all real and positive. Several
eigensolution methods exist in the literature [1-7]. Inverse iteration is a vector iterative
method primarily used for the computation of the smallest eigenvalue and the
corresponding eigenvector. The inverse iteration also forms an integral part of hybrid
eigensolution methods (e.g., see reference [1]) such as Lanczos methods,
simultaneous/subspace iteration method, determinant search method, Rayleigh quotient
iteration and Householder QR inverse iteration (HQRI) method.

The convergence of inverse iteration can be very slow if the eigenvalues are closely spaced
or the starting iteration vector is dificient in the first eigenvector. Rayleigh quotient
iteration [1] is a shifted inverse iteration method where the iterations are performed as an
alternate sequence between the following pair of equations:

[K — p(x;- )M]X; = MX; 4, X =—F—F—, 2,3

where Rayleigh’s quotient is computed as

=T . T
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The iteration is terminated whenever the relative change in Rayleigh’s quotient between
successive iterations is less than the allowable tolerance. The convergence of this method is
reported to be cubic [1, 8]. In spite of its excellent convergence characteristics, the method
may, in principle, converge arbitrarily to any eigenvalue depending on the magnitude of the
shift value, and hence assuring convergence to any particular eigenvalue is difficult. This is
in contrast with the inverse iteration method, where the convergence is always towards the
first eigenvalue, provided the starting vector is not deficient in the first eigenvector.
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If the first eigenpair, viz., the first eigenvalue and the corresponding eigenvector, is
required to be computed using Rayleigh quotient iteration, one possibility is to initially use
the inverse iteration until Rayleigh’s quotient becomes sufficiently close to the first
eigenvalue, and then switch over to Rayleigh quotient iteration. However, it is often difficult
[1] to decide how many iterations are required before switching so as to ensure convergence
to the first eigenpair. In this work, a modification of Rayleigh quotient iteration algorithm is
proposed for forcing the iterations converge towards the first eigenvector.

At every iteration of the proposed algorithm, a linear combination of the latest and the
preceding iteration vectors is formed involving an undetermined scalar, and the scalar is
determined by minimizing the Rayleigh quotient. The concept of Rayleigh quotient
minimization for obtaining an optimum linear combination of two vectors has been used in
several different contexts, as, for example, the conjugate gradient methods [9-12] and
co-ordinate relaxation methods [12-14]. In this work, Rayleigh quotient minimization is
used as a tool to force the iterations converge towards the first eigenvector. Recently, the
technique has been used for improving the convergence of inverse iteration by Rajendran
et al. [157] and for accelerating the subspace iteration by Rajendran and Narasimhan [16].

2. MODIFIED RAYLEIGH QUOTIENT ITERATION ALGORITHM

The modified Rayleigh quotient iteration is carried out as follows:

Step 1: Set up a randomly generated vector, x,, of order n. Set the iteration no. i = 0. Let
the shift value, s, be initially set to zero.
Step 2: Increment the iteration number by unity. Solve for X; from the equation

[K - SM] ii == MXI-,I. (5)
Step 3: Form a linear combination of vectors X; and x;_; as
R = X;- 1 + oX;, (6)

where o is an undetermined scalar. Choose the value of « such that Rayleigh
quotient, p(X;), reaches a minimum value, p(X;)uin- S€t 5 = P(Xi)min-
Step 4: Normalize the vector X; to obtain

Xj= )

Step 5: Check for convergence. If convergence has not been reached go to Step 2.

The difference between the proposed algorithm and the classical algorithm is Step 3. The
choice of o such that the Rayleigh’s quotient is minimum tends to improve the strength of
first eigenvector component in the iteration vectors. This enhances the chances of
convergence towards the first eigenvector. Of course, for the iterations to proceed towards
first eigenvector, the vectors X; and x;_; should not be completely void of the first
eigenvector.

As apparent from the algorithm described above, the proposed algorithm is still
a single-iteration-vector algorithm like the original Rayleigh quotient algorithm. However,
at every iteration, the subspace spanned by the previous iteration vector, x;_, and the
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current iteration vector, X;, is scanned to locate the “best” iteration vector, X;, which is then
used on the right-hand side of equation (5) during the next iteration after a normalization
process shown by equation (7). The “best” vector is obtained by Rayleigh quotient
minimization with respect to the parameter, o, defined in equation (6). Nevertheless, the
present algorithm, cannot be viewed as a subspace iteration algorithm which is basically
a multi-iteration-vector algorithm. Furthermore, at every iteration of subspace iteration
method, the “best” input vectors for the next iteration are located from the subspace
spanned by the current iteration vectors only, and the previous iteration vectors do not
enter the process of locating the “best” vectors. While multi-vector algorithms like the
subspace iteration are more efficient for the extraction of a set of lowest eigenvalues, the
single-vector algorithms are generally more efficient when only the first eigenvalue is sought
which is often the case in many practical engineering problems.

2.1. COMPUTATING THE SCALAR, o

Rayleigh’s quotient corresponding to the vector X; is given by

TR,
p&) = ot ®)

i

>
>

>

Using equations (5)—(7), this can be rewritten as

-
where
A= pRi- Jmin = p(Xi=1) =5, (10)
B=1+sX{Mx;_, C =X/ Mx;_; + sx; Mx,, (11, 12)
D =xMx;_,, E = XTMX,. (13, 14)

Equating the first derivative of p(X;) with respect to « to zero, the condition for the
stationarity of p(X;) is obtained as

Fo? + Gau+ H =0, (15)
where
F =2(DC — BE) = 2[(XIMx;_,)> — X/ MX;], (16)
G =2(C — AE) = 2% Mx,_,, (17)
H=2(B— AD)=2. (18)

It can be shown that equation (15) has two real roots, one negative and the other positive,
and the negative root corresponds to the minimum and is used in equation (6). This can be
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proved by establishing that (G —4FH) > G*> = FH <0 = F < 0. This is done by first
rewriting the right side of equation (16) as 2 [(Xf Mx;_)? — (Xf MX,) (x;— ; Mx;_ ;)] wherein
the result (x;_;Mx;_;) = 1 arising out of normalization in equation (3) is used, and then
applying Cauchy-Schwarz inequality to equation (16).

2.2. NUMERICAL ASPECTS
The numerical stability of the method of computing the optimum value of o, particularly
under the condition when the vector x;_; has already converged close to the first
eigenvector py, is investigated here.
Let
X;—1 =P1 + &z, (19)
where ¢ is a scalar of small value and z is the polluting vector:

X;_Mx;_; =1 (by equation (7)). (20)

Using equation (19) in equation (20), and assuming that the eigenvector p, is normalized
such that piMp; = 1, it can be shown that

piMz = — Se2" Mz (21)
The expression for Rayleigh’s quotient p(x;_ ) can be shown (e.g., see reference [1]) to be

p(Xi—1) =41 + 0(e?), (22)

where A, is the first eigenvalue and the notation o(¢?) means “of the order of &>
Using equation (19) for eliminating x;_; in equation (5) and noting that s = p(x;_1),

equation (5) can be shown (e.g., see p. 624 of reference [1]) to yield

S

P R . 23

o~ o 23)
Using equations (19) and (20) in equations (16)-(18), it can be shown that

F=o0("% and G=o(c"?). (24)

As the iterations approach convergence, F and G assume larger and larger values. In the
case of 16-digit precision arithmetic, unless the convergence tolerance is equal to the
precision of computation itself, viz., 101, ¢ is non-zero, and therefore F and G take only
finite values. For engineering computations, a tolerance of 10~ ° is usually sufficient and
hence solution of the quadratic equation (15) does not pose any numerical difficulties. The
method of computation of « is therefore numerically stable.

During computation, it is quite possible that the iteration suddenly converges to the first
eigenpair, i.e., p (X;) becomes very close to 4, although |(p(x;- ;) — p(X;))/p(X;)| is greater than
the convergence tolerance. This happens when the Rayleigh quotient computed in the
previous iteration is close to 4;. Since the Rayleigh quotient is used as the shift value, the
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matrix [K — sM] may become singular to working precision. In such a case, the iteration is
stopped and the current Rayleigh’s quotient is taken as the first eigenvalue.

In the case of inverse iteration, the magnitude of Rayleigh quotient decreases
monotonically with the iteration number. However, in Rayleigh quotient iteration and
hence in the proposed algorithm such a monotonic decrease cannot be guaranteed. During
iterations, it is sometimes possible that p(X;) > p(X;—). Such a condition will induce slow
convergence. Whenever such condition occurs during iterations, the current iteration is
discarded and another inverse iteration is performed before proceeding to the next iteration.

With these precautions, it has been possible to compute the eigenvalue upto an accuracy
10~ '* for the numerical results reported in this work.

3. DEMONSTRATIVE EXAMPLES

The effectiveness of the proposed modification is demonstrated here for four typical test
eigenproblems. The first three problems represent three broad type eigenproblems
encountered in practice. Problem no. 1 has all distinct eigenvalues, problem no. 2 has a pair
of close eigenvalues, and problem no. 3 has three pairs of coincident eigenvalues, each pair
well separated from others. Problem no. 4 is used to demonstrate a case of slow convergence
and the ways to overcome it. For simplicity, the matrix, M, has been chosen to be unit
matrix for all the problems.

Test problem no. 1:

S O o O

0 0 0 -2 10

Eigenvalues: 6:396124528390, 7-506040792565, 9:109916264174, 10-890083735825,
12:493959207434, 13-603875471609.

Test problem no. 2:

1-2649 1-0297 —0-6953 00711  —0-2032

1-0297 20528 —1-5026 03291 —0-5689
K=[-06953 —1-5026 2:4776  —1-3202 0-6515].

0-0711 03291 —1-3202  11-5785 2:9143

—0-2032 —0-5689 0-6515 2:9143 1-7983

Eigenvalues: 0460397657502, 0-460510328556, 1-191540364370, 4-544285979171,
12-:515365670401.
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Test problem no. 3:

300 47 17 0 =25 77
47 400 —54 25 0 85
—-17 -5 500 -—-77 -85 0
0 25 =77 300 47 —17
—25 0 —85 47 400 —54
77 85 0 —17 —54 500

Eigenvalues:  268:6291653522, 268-6291653522, 338-2127620091, 338-2127620091,
593-1580726385, 593-1580726385.

Test problem no 4: The K matrix for this problem is similar to problem no. 1 (with 10 as
diagonal elements and —2 as the super- and sub-diagonal elements, all other elements
being zero), but the size is 20 x 20.

Eigenvalues: 6:04467669509949, 6-:17770877685544, 6:39612452839032, 6:69504490273602,

7-06779251268069, 7-50604079256507, 8-00000000000000, 8-53863590253442,
9-10991626417474, 9-70107962565430, 10-29892037434570, 10-89008373582526,
11-46136409746558, 12-00000000000000, 12:49395920743493, 12:93220748731931,
13-:30495509726398, 13-60387547160968, 13-82229122314456, 13-95532330490051.

The test problems were solved for the smallest eigenvalue using the classical Rayleigh
quotient method as well as the proposed method. The computations were carried out in
double precision arithmetic (16 digits) on a personal computer using MATLAB under
Windows environment.

For each test problem, the starting vector (which was generated randomly) and
Rayleigh’s quotients computed at every iteration are listed in Tables 1-4. Tables 1 and 2
show that for test problem nos. 1 and 2, the unassisted Rayleigh quotient iteration
converges to the third eigenvalue. Table 3 shows that for test problem no. 3, it converges to
the second pair of repeated eigenvalues. For test problem no. 4, it converges to the sixth
eigenvalue (Table 4). However, the modified Rayleigh quotient iteration converges
invariably to the first eigenvalue for all the four test problems.

Although not apparent from Tables 1-4, under certain conditions the proposed
algorithm has a tendency to “home in” towards each eigenvalue in a descending sequence,
and thereby increase the number of iterations. This characteristics is exhibited particularly
for larger eigenproblems, and starting vectors rich in eigenvectors corresponding to large
eigenvalues, and has been investigated for test problem no. 4. The results are summarized in
Table 5. The starting vector was “doped” to different levels using a few steps of power
method so that it becomes rich in eigenvectors corresponding to the large eigenvalues. The
doping factor in Table 5 indicates the number of power iterations employed. It is seen from
Table 5 that for a doping factor of 5, the algorithm has not converged to the first eigenvalue
even after 20 iterations.

In order to overcome the problem discussed above, two schemes of implementation of the
proposed algorithm were tried. In scheme 1, five inverse iterations were carried out before
starting the proposed algorithm. In scheme 2, the inverse iteration and the modified
Rayleigh quotient algorithm were used in an alternate sequence. Table 6 shows the iteration
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TABLE 1

Test results for problem no. 1

Starting vector:
[0-8673034878447652, 0-2032898580655595, —0-5859922412927910,

0-654497117681329, —0-8613606283392751, —0-7142207277469658]"

Itrn. no. Rayleigh’s quotient
Classical Rayleigh quotient itrn.

1 9-351328902712025
2 9-215555235890722
3 9-111379533590579
4 9-109916263068502
5 9-109916264174743
6 9-109916264174743
Modified Rayleigh quotient itrn.

1 9-351328902712025
2 9-215555235890722
3 7-513273388370029
4 7-506040754073311
5 6-398799284847999
6 6-396124528391378
7 6:396124528390323

TABLE 2

Test results for problem no. 2

Starting vector:
[0-6605069125071168, 0-9625388039276095, —0-1693293884017829,

0-3212135355498786, 0-01390640349600392]"

Itrn. no. Rayleigh’s quotient

Classical Rayleigh quotient itrn.

1 1-082662339604678
2 1-172597059940892
3 1-191526325238709
4 1-191540364370301
5 1-191540364370307
Modified Rayleigh quotient itrn.

1 1-082662339604678
2 1-172597059940892
3 0-4844642201007558
4 0-4604712352736948
5 0-4604912064345630
6 0-4603976575020788
7 0-4603976575020757

results for a value of dope factor equal to 5. It is seen that in both the schemes, the number of
modified Rayleigh quotient iterations required are considerably reduced as compared
to Table 5. The reduction is more significant for scheme 1. The additional inverse
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TABLE 3

Test results for problem no. 3

Starting vector:
[0-6605069125071168, 0-9625388039276095, —0-1693293884017829,

0-3212135355498786, 0-01390640349600392]"

Itrn. no. Rayleigh’s quotient
Classical Rayleigh quotient itrn.

1 330-8221490264374
2 337-7638518050452
3 338-2127422808746
4 338-2127620091811
5 338-2127620091811
Modified Rayleigh quotient itrn.

1 330-8221490264374
2 337-7638518050452
3 270-9079758588956
4 268:6293006299139
5 268:6291653522920
6 268:6291653522920

TaBLE 4

Test results for problem no. 4

Starting vector:
[0-20040303902474, 0-14084898383871, 0-06828870872872, —0-04982408234872,

—0-12279682670017, —0-09409858914350, 0-01603567451475, 0-12581172770249,
0-15344333567763, 0-07871936937592, —0-04179011661593, —0-11733902140054,
—0:09133886262867, 0-:01603567451475, 0-12305200118766, 0-14798553037800,
0-07068540364313, —0-05222077726314, —0-12993337323945, —0-10581556865075]

Itrn. no. Rayleigh’s quotient

Classical Rayleigh quotient itrn.

1 7-5027115550871
2 7-060406199968
3 7-5060407925650
Modified Rayleigh quotient itrn.

1 7-5027115590871
2 7-4285573446753
3 6-4930807293976
4 6-1838851162124
5 6-151337825768
6 6:089373331722
7 6-0450965853649
8 6:044676659537
9

6-:0446769509949




LETTERS TO THE EDITOR

TABLE 5

607

Convergence of the modified Rayleigh quotient iteration with poor starting vectors

Dope factor

Itrn. no. 0 1 3 5
1 7-11275158423816  8-46186084741981  11-91212178140190 13-:02664781169423
2 6-90402948968495  7-15395777402287  11:59859793730027 12:77146578263790
3 6:52632562428630  6-84702897039340  11-25098389014921 12-:02230188692784
4 6-34910417830313  6:47104428167842  10-59055425932153  11-99296733422946
5 6-19078524984364  6:36086679869961  10-04629858964318 11-89017957701190
6 6-11352442101270  6:16908851821433 9-61209183528322  11-:24064332441345
7 6-:05108061371926  6:11465189743524 9-21615859573107  10-69200627770691
8 6:04467777763758  6:05462362604674 8:50581457415805 10-12992301027776
9 6-:04467669509949  6:04468576755762 8:16599739192099  9-77243513371510
10 6-:04467669509949 7-52267708838232  9-69956708541769
11 7-49925722205958  9-15477395085166
12 7-41892764898962  9-01917323735062
13 6-80133395926676  8-64130949211539
14 6:53422804614823  8:23479023407235
15 6:35475689202736  7-64779961186355
16 6-18449960604182  7-47974822060612
17 6:14149657750936  7-13120032981022
18 6:07502368511566  7-03768854603411
19 6:04480501377325  6:79884178630988
20 6:04467669510920  6:61275242383886
TABLE 6

Convergence of schemes 1 and 2 of modified Rayleigh quotient iterations for dope factor = 5

Itrn. no. Scheme 1 Scheme 2
1 12:6674226364862 1t 12:66742263648623 1
2 11-9121217814019 1 11-81324230549916 M*
3 10-4123650573217 1 11-:23426585451453 1
4 8-46186084741981 1 10-51700855671701 M
5 7-11275158423816 1 9-63912983399942 1
6 6-90402948968494 M 9-39690564358033 M
7 6:52632562428629 M 8:29664826791887 1
8 6:34910417830313 M 6:88059785749399 M
9 6-19078524984363 M 6:67543664443282 1
10 6-11352442101274 M 6-57098888749898 M
11 6-:05108061371928 M 6-48667628888171 1
12 6:04467777763758 M 6-33083556240958 M
13 6:04467669509949 M 6:31224789992960 1
14 6:08794738514923 M
15 6:07275547061112 1
16 6:04479400090013 M
17 6-04478400585309 I
18 6:04467669510401 M
19 6:04467669510245 1
20 6:04467669509949 M

"The letter “I” refers to inverse iteration.

¥The letter “M” refers to modified Rayleigh quotient iteration.
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iterations required in these schemes increase the total computational time marginally as the
inverse iteration is computationally less intensive compared to Rayleigh quotient iteration.

The convergence of the proposed method towards the first eigenvalue is enabled by the
Rayleigh quotient minimization employed. Although the proposed algorithm has
invariably converged to the first eigenvalue for all the four test problems, theoretically, there
exists a possibility that the algorithm could converge to eigenvalues other than the first,
whenever the starting vector is deficient in the first eigenvector. Such possibility also exists
whenever the shifts value (i.e., Rayleigh quotient computed in the previous iteration) is
accidentally very close to an eigenvalue other than the first. After reaching convergence,
a Sturm sequence would be useful to ensure if the computed eigenvalue is indeed the first
eigenvalue.

4. COMPARISON OF PERFORMANCE WITH THE CONJUGATE
GRADIENT ALGORITHMS

The proposed algorithm has some similarities with the conjugate gradient methods. Vast
amount of literature exists on conjugate gradient methods, and for the present comparison,
we refer, in particular, to the work of Yang et al. [17], and Perdon and Gambolati [18].
Typically, in conjugate gradient methods, the (k + 1)th iteration vector, X, ;, is obtained
from the kth iteration vector, X, as follows:

Xip+1 = Xg + L, (25)

where ¢, is a scalar parameter and q is the search direction. Equation (25) appears similar to
equation (6) in form. Further, as in the proposed algorithm, the scalar parameter, t;, is
computed by minimizing the Rayleigh quotient, p(x; + ). In the conjugate gradient method,
the successive search directions are chosen so as to satisfy the orthogonality condition

q.+1Hgq, =0, (26)

where H is an nxn matrix, the different choice of which yields conjugate gradient
algorithms of different rates of convergence [17]. In the proposed algorithm, however, the
search direction is not explicitly defined as in the conjugate gradient methods although X; in
equation (6) may perhaps be looked upon as the search direction; the search for the “best”
vector is carried out in the two-dimensional subspace spanned by the current and the
previous vectors (viz., X; and x; _ ) of Rayleigh quotient iteration, as implied by equation (6).

In the rest of this section, the performance of the modified Rayleigh quotient algorithm is
compared with that of typical conjugate gradient algorithms. First, the example problem
solved by Yang et al. [17] is considered. This problem which is referred to as problem no. 5
hereinafter involves computing the smallest eigenvalue of the eigenproblem, Ap = Ap where
A is defined as follows.

Test problem no. 5:

Fro I o I'ys
ry o o T4
rs rq e T3

15 T4 - To



LETTERS TO THE EDITOR 609

where
ro = 1-00000000, r; = 091189350, r, = 0-75982820, r; = 0-59792770,
ry = 041953610, rs = 027267350, r¢ = 013446390, r, = 0-00821722,

—0:09794101, rg = — 0-21197350, r1o = — 0-30446960, r; = — 0-34471370,

rs

— 0-34736840, r;3 = — 0-32881280, ry4 = — 0-29269750, r; 5 = — 0-24512650.

ri2

The smallest eigenvalue of this problem is 0-00325850037049.

The four versions of conjugate gradient algorithms, viz., “CA”, “TJ”, “FR” and “HE”
versions studied by Yang et al. [17], and the Rayleigh quotient modified conjugate gradient
iteration (RQ-MCG) of Perdon and Gambolati [ 18] are used here for comparison. Perdon
and Gambolati [ 18] consider various implementation of the RQ-MCG algorithm. For the
present comparison, we use that particular implementation in which A~! is taken as the
pre-condition matrix as this particular implementation has been shown to be better than
others. It is important to note that the various versions discussed by Yang et al. [17] do not
involve inverse of A matrix whereas the RQ-MCG algorithm [18] does. The eigenvalues
were computed for a convergence tolerence of 10~ ¢ as well as 10~ *2, The starting vector, X,
for all the algorithms is the same, and is obtained by perturbing the eigenvector
corresponding to the largest eigenvalue; the first element of this eigenvector is multiplied by
a factor of (1 4+ 107°). This process gives a starting vector which is very rich in the
eigenvector corresponding to the largest eigenvalue and hence very poor in the first as well
as other eigenvectors. Such a starting vector is useful in assessing how well the various
algorithms converge to the first eigenvalue with a poor starting vector. The results are
summarized in Table 7 wherein MRQ refers to a case where the proposed modified
Rayleigh quotient iteration is used all through the iterations. INV-MRQ refers to a case
where the first few iterations are inverse iterations followed by the modified Rayleigh
quotient iterations thereafter.

Table 7 shows that INV-MRQ requires the least number of iterations and also the lowest
computational time for convergence both for the convergence tolerance of 10~ as well as

TABLE 7

Comparison of effectiveness with the conjugate gradient algorithms for test problem no. 5

Conv. tol. =107° Conv. tol. =107 12

No. of CPU Computed No. of CPU Computed
Alg. Itrns.  time' eigenvalue Itrns.  time' eigenvalue
CA [17] 153 129 0-00325851622410 443 410 0-00325850037080
TJ [17] 106 84 0-00325853197061 172 137 0-00325850037055
FR [17] 119 92 0-00325852053118 196 150 0-00325850037053
HE [17] 83 77 0-00325851284326 139 128 0-00325850037050
RQ-MCG [18] 9 69  0:00325850039639 11 91 0-00325850037050
MRQ? 7 97 0-:00325850037049 7 97 0-00325850037049
INV-MRQ® 6 46 0-00325850037049 6 46 0-00325850037049

"In arbitrary units.

#Modified Rayleigh quotient algorithm at every iteration.

Sk number of inverse iterations first, followed by modified Rayleigh quotient iteration for the rest of the solution
process. k = 3 and k = 2 for convergence tolerance 10~ ° and 10~ 2 respectively.
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Figure 1. Convergence of first eigenvalue for test problem no. 5.

107 1'%, The computational times reported have been calculated using the standard
MATLAB commands, and are to be taken as a rough estimate as the computations have
been carried out under the Windows environment, wherein the effect of the system-related
background processes on the time estimates is difficult to assess. The values reported here
are the average of 1000 repetitive time estimates. An interesting observation from Table 7 is
that the eigenvalue computed with MRQ or INV-MRQ algorithm is accurate to 14 decimal
places even with a specified convergence tolerance of 10~ °. This feature of the proposed
algorithm is due to the inheritance of the cubic convergence characteristics from the parent
algorithm, viz., Rayleigh quotient iteration, and suggests that MRQ and INV-MRQ are
particularly effective when the eigenvalue needs to be computed to a higher precision.
Figure 1 shows the plot of convergence of various algorithms wherein the higher order
convergence of MRQ and INV-MRQ is clearly seen.

The various algorithms compared above were also applied to test problem no. 4. In this
case, the starting vector used is of the form [1, 0, 0, ...,0] where the first entry is unity and
the rest are all zero. The results are summarized in Table 8. A study of this table shows that,
here again, INV-MRQ algorithm requires the least number of iterations as well as the
lowest computational time. Also, the eigenvalue computed with MRQ or INV-MRQ
algorithm is accurate to 14 decimal places even with a convergence tolerance of 10~ ° as has
already been observed for test problem no. 5. Figure 2 shows the convergence plot for test

problem no. 4, which again confirms the higher order convergence characteristics of MRQ
and INV-MRQ.

5. CONCLUDING REMARKS

The classical Rayleigh quotient iteration may converge arbitrarily to any eigenvalue, and
hence assuring convergence to the first eigenvalue is difficult. In this work, a modification of
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TABLE 8

Comparison of effectiveness with the conjugate gradient algorithms for test problem no. 4

Conv. tol. =107 Conv. tol. = 10712

No.of CPU Computed No. of CPU Computed
Alg. Itrns.  time® eigenvalue Itrns.  time® eigenvalue
CA [17] 70 60 6:04471185521904 161 156 6:04467669513271
TJ [17] 31 31 6:04468149804272 60 50 6:04467669511078
FR [17] 31 29 6:04468305754015 53 41 6:04467669511614
HE [17] 30 28 6:04468116207983 54 50 6:04467669512065
RQ-MCQG [18] 66 49 6:04470849686265 156 112 6:04467669513494
MRQ# 18 24 6:04467669509949 18 24 6-:04467669509949
INV-MRQ* 14 16 6:04467669509949 14 16 6-:04467669509949

In arbitrary units.

*Modified Rayleigh quotient algorithm at every iteration.
%5 inverse iterations first, followed by modified Rayleigh quotient iteration for the rest of the solution process

Log(absolute error in the computed eigenvalue)

20k \ —=— HE[17]
! -°- RQMCG [18]
! ! -8- MRQ (Present)
25t \ | -*- INV-MRQ (Present) E
30 \ \ ]
* =
_35 L 1 1 1 L
1 6 11 16 21 26

Iteration number

Figure 2. Convergence of first eigenvalue for test problem no. 4.

the Rayleigh quotient iteration is proposed to enable the iterations to converge towards the
first eigenvector. Numerical examples presented demonstrate that the proposed algorithm
does converge to the first eigenvalue. However, for larger eigenproblems and poor starting
vectors, the proposed algorithm has a tendency to “home in” towards each eigenvalue in
a decending sequence thereby increasing the number of iterations. This problem has been
overcome by employing a few inverse iterations before starting the modified Rayleigh
quotient algorithm. A comparison of performance with typical conjugate gradient
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algorithms shows that the modified Rayleigh quotient algorithm requires less number of
iterations and less computational time in most cases. The higher order convergence
characteristics of MRQ and INV-MRQ algorithms renders their use particularly attractive
when the eigenvalue needs to be computed with a greater precision. These attractive
features suggest that the proposed algorithm is worth further investigations by other
researchers.
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